Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765912

RESUMO

Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.

3.
J Biol Chem ; 299(4): 103023, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805338

RESUMO

Raf kinase inhibitor protein (RKIP) is a multifunctional modulator of intracellular signal transduction. Although most of its functions have been considered cytosolic, we show here that the localization of RKIP is primarily nuclear in both growing and quiescent Madin-Darby canine kidney epithelial cells and in Cal-51 and BT-20 human breast cancer cells. We have identified a putative bipartite nuclear localization signal (NLS) in RKIP that maps to the surface of the protein surrounding a known regulatory region. Like classical NLS sequences, the putative NLS of RKIP is rich in arginine and lysine residues. Deletion of and point mutations in the putative NLS lead to decreased nuclear localization. Point mutation of all the basic residues in the putative NLS of RKIP particularly strongly reduces nuclear localization. We found consistent results in reexpression experiments with wildtype or mutant RKIP in RKIP-silenced cells. A fusion construct of the putative NLS of RKIP alone to a heterologous reporter protein leads to nuclear localization of the fusion protein, demonstrating that this sequence alone is sufficient for import into the nucleus. We found that RKIP interacts with the nuclear transport factor importin α in BT-20 and MDA-MB-231 human breast cancer cells, suggesting importin-mediated active nuclear translocation. Evaluating the biological function of nuclear localization of RKIP, we found that the presence of the putative NLS is important for the role of RKIP in mitotic checkpoint regulation in MCF-7 human breast cancer cells. Taken together, these findings suggest that a bipartite NLS in RKIP interacts with importin α for active transport of RKIP into the nucleus and that this process may be involved in the regulation of mitotic progression.


Assuntos
Sinais de Localização Nuclear , Proteína de Ligação a Fosfatidiletanolamina , alfa Carioferinas , Animais , Cães , Humanos , Transporte Ativo do Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Células Madin Darby de Rim Canino
4.
Cancers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892864

RESUMO

Raf-1 kinase inhibitor protein was first identified as a negative regulator of the Raf signaling pathway. Subsequently, it was shown to have a causal role in containing cancer progression and metastasis. Early studies suggested that RKIP blocks cancer progression by inhibiting the Raf-1 pathway. However, it is not clear if the RKIP tumor and metastasis suppression function involve other targets. In addition to the Raf signaling pathway, RKIP has been found to modulate several other signaling pathways, affecting diverse biological functions including immune response. Recent advances in medicine have identified both positive and negative roles of immune response in cancer initiation, progression and metastasis. It is possible that one way that RKIP exerts its effect on cancer is by targeting an immune response mechanism. Here, we provide evidence supporting the causal role of tumor and metastasis suppressor RKIP in downregulating signaling pathways involved with immune response in breast cancer cells and discuss its potential ramification on cancer therapy.

5.
Sci Rep ; 11(1): 17455, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465801

RESUMO

Raf-1 kinase inhibitor protein was initially discovered as a physiological kinase inhibitor of the MAPK signaling pathway and was later shown to suppress cancer cell invasion and metastasis. Yet, the molecular mechanism through which RKIP executes its effects is not completely defined. RhoA has both a pro- and anti-metastatic cell-context dependent functions. Given that Rho GTPases primarily function on actin cytoskeleton dynamics and cell movement regulation, it is possible that one way RKIP hinders cancer cell invasion/metastasis is by targeting these proteins. Here we show that RKIP inhibits cancer cell invasion and metastasis by stimulating RhoA anti-tumorigenic functions. Mechanistically, RKIP activates RhoA in an Erk2 and GEF-H1 dependent manner to enhance E-cadherin membrane localization and inhibit CCL5 expression.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/prevenção & controle , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Proliferação de Células , Feminino , Humanos , Camundongos , Proteína de Ligação a Fosfatidiletanolamina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética
6.
Sci Rep ; 9(1): 16351, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705019

RESUMO

The role of RhoA GTPases in breast cancer tumorigenesis and metastasis is unclear. Early studies within which mutations in RhoA were designed based on cancer-associated mutations in Ras supported an oncogene role for RhoA. However, recent whole-genome sequencing studies of cancers raised the possibility that RhoA may have a tumor suppression function. Here, using a syngeneic triple negative breast cancer murine model we investigated the physiological effects of reduced RhoA expression on breast cancer tumorigenesis and metastasis. RhoA knockdown had no effect on primary tumor formation and tumor proliferation, concurring with our in vitro findings where reduced RhoA had no effect on breast cancer cell proliferation and clonogenic growth. In contrast, primary tumors with RhoA knockdown efficiently invaded sentinel lymph nodes and significantly metastasized to lungs compared to control tumors. Mechanistically, the current study demonstrated that this is achieved by promoting a pro-tumor microenvironment, with increased cancer-associated fibroblasts and macrophage infiltration, and by modulating the CCL5-CCR5 and CXCL12-CXCR4 chemokine axes in the primary tumor. To our knowledge, this is the first such mechanistic study in breast cancer showing the ability of RhoA to suppress chemokine receptor expression in breast tumor cells. Our work suggests a physiological lung and lymph node metastasis suppressor role for RhoA GTPase in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Receptores CCR5/genética , Receptores CXCR4/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética
7.
Sci Rep ; 9(1): 6688, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040372

RESUMO

One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFß, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFß and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Óxido Nítrico/biossíntese , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Receptor ErbB-2/genética , Fator de Crescimento Transformador beta/genética , Animais , Biomarcadores , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Lesões Pré-Cancerosas/patologia , Receptor ErbB-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA